3
In sum, MCMC are utilised to estimate characteristics of a posterior distribution
by constructing a Markov chain with the target as its equilibrium distribution.
References
Behrends, E. (2014). Buffon: Hat er Stöckchen geworfen oder hat er nicht?
RETROSPEKTIVE, 22, 50–52. https://doi.org/10.1515/dmvm-2014-0022
Buffon, G. (1777). Essai d’arithmétique morale. Histoire Naturelle, Générale Er
Particulière, (Supplément 4), 46–123.
Crosson, E., & Harrow, A. W. (2016). Simulated Quantum Annealing Can Be
Exponentially Faster Than Classical Simulated Annealing. In Proceedings -
Annual IEEE Symposium on Foundations of Computer Science, FOCS (Vol.
2016-Decem, pp. 714–723). https://doi.org/10.1109/FOCS.2016.81
Dell, Z. E., & Franklin, S. V. (2009). The Buffon-Laplace needle problem in three
dimensions. Journal of Statistical Mechanics: Theory and Experiment,
2009(9). https://doi.org/10.1088/1742-5468/2009/09/P09010
Diaconis, P. (1976). Buffon’s problem with a long needle. Journal of Applied
Probability, 13(3), 614–618.
Diaconis, P. (2008). The Markov chain Monte Carlo revolution. Bulletin of the
American Mathematical Society, 46(2), 179–205.
https://doi.org/10.1090/S0273-0979-08-01238-X
Dunn, W. L., & Shultis, J. K. (2012). Exploring Monte Carlo Methods. Exploring
Monte Carlo Methods. https://doi.org/10.1016/C2009-0-16850-2
Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85(410),
398–409. https://doi.org/10.1080/01621459.1990.10476213
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian Data Analysis.
Chapman Texts in Statistical Science Series.
https://doi.org/10.1007/s13398-014-0173-7.2
Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using
Multiple Sequences. Statistical Science, 7(4), 457–472.
https://doi.org/10.1214/ss/1177011136
Gong, L., & Flegal, J. M. (2016). A Practical Sequential Stopping Rule for High-
Dimensional Markov Chain Monte Carlo. Journal of Computational and
Graphical Statistics, 25(3), 684–700.
https://doi.org/10.1080/10618600.2015.1044092