Block et al. The relationship between self-report of depression and media usage
Table 2 | Structure matrix of discriminant analysis predicting
depression, December 2012.
Canonical correlation 0.235 Chi-square 922.117
Wilk’s lambda 0.945 significance <0.001
Disabled 0.760
Income −0.519
Internet usage 0.399
TV usage 0.368
Social media usage 0.278
Education −0.255
Unemployed 0.223
Age −0.170
Living in top 10 MSA −0.142
Female 0.062
Having children 0.010
This table reports the structure matrix of the discriminant analysis. The nine pre-
dictive variables used in the discriminant analysis are reported in the left column,
while a measure of that variable’s predictive importance in the discriminant func-
tion is listed on the right. A variable’s importance is determined by its magnitude,
while its relationship to depression is determined by its valence. Negative num-
bers describe an inverse relationship: for example, higher income is predictive
of less depression.
In summary, the data reveal that there is a consistent pat-
tern of results that link self-reported depression with increased
media use, even when taking into account other variables, such
as disability and unemployment. This media use was focused
more on internet use and TV exposure, for those making self-
reports of depression. The rate of SRD was between two standard
indices used in published reports of clinically diagnosed major
depression, namely the lifetime prevalence, and recent 12 month
incidence of major depression. These observations suggest the
current findings with big data may have relevance to the literature
focused on the clinical diagnosis of depression.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/HumanNeuroscience/10.
3389/fnhum.2014.00712/abstract
REFERENCES
Ahuvia, A. C. (2005). Beyond the extended self: loved objects and consumers’
identity narratives. J. Consum. Res. 32, 171–184. doi: 10.1086/429607
Biggs, D., De Ville, B., and Suen, E. (1991). A method of choosing multi-way
partitions for classification and decision trees. J. Appl. Stat. 18, 49–62. doi:
10.1080/02664769100000005
Blood, A. J., Iosifescu, D. V., Makris, N., Perlis, R. H., Kennedy, D. N., Dougherty,
D. D., et al. (2010). Phenotype genotype project on addiction and mood
disorders. Microstructural abnormalities in subcortical reward circuitry of
subjects with major depressive disorder. PLoS ONE 5:e13945. doi: 10.1371/jour-
nal.pone.0013945
Brage, D., Meredith, W., and Woodward, J. (1993). Correlates of loneliness among
midwestern adolescents. Adolescence 28, 685–693.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification
and Regression Trees. The Wadsworth statistics/probability series. New York, NY:
Chapman and Hall/CRC.
Breiter, H. C., and Gasic, G. P. A. (2004). “General circuitry of reward/aversion and
its implications for neuropsychiatric illness,” in The Cognitive Neurosciences,ed
M. Gazzaniga (Cambridge, MA: MIT Press), 1043–1065.
Breiter, H. C., Gasic, G. P., and Makris, N. (2006). “Imaging the neural systems
for motivated behavior and their dysfunction in neuropsychiatric illness,” in
Complex Systems Science in Biomedicine, eds T. S. Deisboeck, and J. Y. Kresh
(New York, NY: Springer Verlag), 763–810. doi: 10.1007/978-0-387-33532-2_33
Catalano, R., and Dooley, C. D. (1977). Economic predictors of depressed mood
and stressful life events in a metropolitan community. J. Health Soc. Behav. 18,
292–307.
Cloninger, C. R. (2002). The discovery of susceptibility genes for mental disorders.
Proc. Natl. Acad. Sci. U.S.A. 99, 13365–13367. doi: 10.1073/pnas.222532599
Cushman, P. (1990). Why the self is empty. Toward a historically situated psychol-
ogy.AmPsychol.45, 599–611. doi: 10.1037/0003-066X.45.5.599
de Wit, L., van Straten, A., Lamers, F., Cuijpers, P., and Penninx, B. (2011).
Are sedentary television watching and computer use behaviors associated
with anxiety and depressive disorders? Psychiatry Res.186, 239–243. doi:
10.1016/j.psychres.2010.07.003
DiTommaso, E., and Spinner, B. (1997). Social and emotional loneliness: a reex-
amination of Weiss’ typology of loneliness. Pers. Individ. Dif. 22, 417–427. doi:
10.1016/S0191-8869(96)00204-8
Dodds, P. S., Harris, K. D., Kloumann, I. M., Bliss, C. A., and Danforth, C. M.
(2011). Temporal patterns of happiness and information in a global social
network: hedonometrics and twitter. PLoS ONE 6:e26752. doi: 10.1371/jour-
nal.pone.0026752
Dugan, E., and Kivett, V. R. (1994). The importance of emotional and social isola-
tion to loneliness among very old rural adults. Gerontologist 34, 340–346. doi:
10.1093/geront/34.3.340
Friedman, J. H. (1977). A recursive partitioning decision rule for nonparametric
classification. IEEE Trans. Comput. 26, 404–407. doi: 10.1109/TC.1977.1674849
Gordon, L., and Olshen, R. A. (1984). Almost surely consistent nonparamet-
ric regression from recursive partitioning schemes. J. Multivariate Anal.15,
147–163. doi: 10.1016/0047-259X(84)90022-8
Henderson, A. S., Jorm, A. F., Korten, A. E., Jacomb, P., Christensen, H., and
Rodgers, B. (1998). Symptoms of depression and anxiety during adult life:
evidence for a decline in prevalence with age. Psychol. Med. 28, 1321–1328.
Henry, P. C. (2005). Social class, market situation, and consumers’ metaphors of
(dis)empowerment. J. Consum. Res. 31, 766–778. doi: 10.1086/426610
Jelenchick, L. A., Eickhoff, J. C., and Moreno, M. A. (2013). “Facebook depression?”
social networking site use and depression in older adolescents. J. Adolesc. Health.
52, 128–130. doi: 10.1016/j.jadohealth.2012.05.008
Kass, G. V. (1980). An exploratory technique for investigating large quantities of
categorical data. Appl. Stat. 29, 119–127. doi: 10.2307/2986296
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., and Walters,
E. E. (2005a). Lifetime prevalence and age-of-onset distributions of DSM-IV
disorders in the National Comorbidity Survey Replication. Arch.Gen.Psychiatry
62, 593–602. doi: 10.1001/archpsyc.62.6.593
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., and Walters, E. E.
(2005b). Prevalence, severity, and comorbidity of 12-month DSM-IV disor-
ders
in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62,
617–627. doi: 10.1001/archpsyc.62.6.617
Kross, E., Verduyn, P., Demiralp, E., Park, J., Lee, D. S., Lin, N., et al. (2013).
Facebook use predicts declines in subjective well-being in young adults. PLoS
ONE 8:e69841. doi: 10.1371/journal.pone.0069841
Mingers, J. (1989). An empirical comparison of pruning methods for decisiontree
induction. Mach. Learn. 4, 227–243. doi: 10.1023/A:1022604100933
Morgan, J. N., and Sonquist, J. A. (1963). Problems in the analysis of
survey data and a proposal. J. Am. Stat. Assoc. 58, 415–434. doi:
10.1080/01621459.1963.10500855
Morgenstern, J., Naqvi, N. H., Debellis, R., and Breiter, H. C. (2013). The contri-
butions of cognitive neuroscience and neuroimaging to understanding mecha-
nisms of behavior change in addiction. Psychol. Addict. Behav. 27, 336–350. doi:
10.1037/a0032435
Orsal, O., Orsal, O., Unsal, A., and Ozlap, S. (2012). Evaluation of internet addiction
and depression among university students. Procedia Soc. Behav. Sci. 82, 445–454.
doi: 10.1016/j.sbspro.2013.06.291
Pantic, I., Damjanovic, A., Todorovic, J., Topalovic, D., Bojovic-Jovic, D., Ristic,
S., et al. (2012). Association between online social networking and depression
in high school students: behavioral physiology viewpoint. Psychiatr. Danub. 24,
90–93.
Primack, B. A., Swanier, B., Georgiopoulos, A. M., Land, S. R., and Fine, M.
J. (2009). Association between media use in adolescence and depression in
Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 712
|