PRODES – Deforestation Monitoring Project in the Legal Amazon by Satellite

Silva Junior, C. H. L., Pessôa, A. C. M., Carvalho, N. S., Reis, J. B. C., Anderson, L. O., & Aragão, L. E. O. C.. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology & Evolution, 5(2), 144–145.

Plain numerical DOI: 10.1038/s41559-020-01368-x
DOI URL
directSciHub download

 

[R Package datazoom.amazonia version 0.3.0 Index] URL: https://search.r-project.org/CRAN/refmans/datazoom.amazonia/html/load_prodes.html

Description:

Loads information on clearcut deforestation in the Legal Amazon and annual deforestation rates in the region. Survey is done at state or municipality level and data is available from 2000 to 2020.

# download raw data from 2000 to 2020
raw_prodes_all <- load_prodes(
dataset = "prodes",
raw_data = TRUE,
time_period = 2000:2020
)

Usage

load_prodes(dataset = "prodes", raw_data, time_period, language = "eng")

Arguments
dataset

A dataset name (“prodes”).

raw_data

A boolean setting the return of raw (TRUE) or processed (FALSE) data.

time_period

A numeric indicating what years will the data be loaded in the format YYYY. Can be a sequence of numbers such as 2010:2012.

language

A string that indicates in which language the data will be returned. Currently, only Portuguese (“pt”) and English (“eng”) are supported. Defaults to “eng”.


Loarie, S. R., Asner, G. P., & Field, C. B.. (2009). Boosted carbon emissions from Amazon deforestation. Geophysical Research Letters

Plain numerical DOI: 10.1029/2009GL037526
DOI URL
directSciHub download

Parente, L., Nogueira, S., Baumann, L., Almeida, C., Maurano, L., Affonso, A. G., & Ferreira, L.. (2021). Quality assessment of the PRODES Cerrado deforestation data. Remote Sensing Applications: Society and Environment

Plain numerical DOI: 10.1016/j.rsase.2020.100444
DOI URL
directSciHub download

Nunes, S. mia, Oliveira, L., Siqueira, J. o., Morton, D. C., & Souza, C. M.. (2020). Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environmental Research Letters

Plain numerical DOI: 10.1088/1748-9326/ab76db
DOI URL
directSciHub download

Barni, P. E., Barbosa, R. I., Manzi, A. O., & Fearnside, P. M.. (2020). Simulated deforestation versus satellite data in Roraima, Northern Amazonia, Brazil. Sustentabilidade Em Debate

Plain numerical DOI: 10.18472/SustDeb.v11n2.2020.27493
DOI URL
directSciHub download

Müller, H., Griffiths, P., & Hostert, P.. (2016). Long-term deforestation dynamics in the Brazilian Amazon—Uncovering historic frontier development along the Cuiabá–Santarém highway. International Journal of Applied Earth Observation and Geoinformation

Plain numerical DOI: 10.1016/j.jag.2015.07.005
DOI URL
directSciHub download

Gasparini, K. A. C., Junior, C. H. L. S., Shimabukuro, Y. E., Arai, E., E Aragão, L. E. O. C., Silva, C. A., & Marshall, P. L.. (2019). Determining a threshold to delimit the Amazonian forests from the tree canopy cover 2000 GFC data. Sensors (Switzerland)

Plain numerical DOI: 10.3390/s19225020
DOI URL
directSciHub download

Torres, D. L., Turnes, J. N., Vega, P. J. S., Feitosa, R. Q., Silva, D. E., Marcato Junior, J., & Almeida, C.. (2021). Deforestation detection with fully convolutional networks in the amazon forest from landsat-8 and sentinel-2 images. Remote Sensing

Plain numerical DOI: 10.3390/rs13245084
DOI URL
directSciHub download

Leave a Reply