Podcast with Prof. Roger Malina @ CreativeDisturbance.org

icon-fullscreen Open the podcast as an “Immersive Fullscreen Animation“.

URL: https://creativedisturbance.org/voice/christopher-germann/

Christopher Germann and Prof. Roger Malina discuss Chris’ current work in the Cognovo PhD program, on quantum cognition which applies the mathematical formalisms of quantum theory to understanding cognitive processes. Chris is currently working on non-commutativity in decision theory, with laboratory experiments in visual decision making. He is also studying the role of the endogenous neurotransmitter DMT (N,N-Dimethyltryptamine) in perception and cognition.

Expertise: Psychology, Neuroscience, Philosophy of science and mind.

Bio

Chris Germann is a Marie-Curie research fellow in the CogNovo doctoral programme at the Cognition Institute of Plymouth University, which is government-funded by the European Commission. Chris has broad interdisciplinary interests and he is momentarily mainly focusing on cognitive psychology and neuroscience. He is particularly interested in irrationality and decision making and the neuronal Serotonin system and its role in perception and cognition (for instance, creativity and neuroplasticity). Furthermore, philosophy of science and mind capture his deepest curiosity.

References

Quantum CognitionDMT

Quantum Cognition

Aerts, D., Broekaert, J., & Gabora, L.. (2011). A case for applying an abstracted quantum formalism to cognition. New Ideas in Psychology, 29(2), 136–146.

Plain numerical DOI: 10.1016/j.newideapsych.2010.06.002
DOI URL
directSciHub download

Atmanspacher H.. (2015). Complementary Observables and Non-Boolean Logic Outside Quantum Physics. Arxiv.Org

Atmanspacher, H.. (2014). Non-Commutative Operations in Consciousness Studies. Journal of Consciousness Studies

Atmanspacher, H.. (2016). Non-commutative Structures from Quantum Physics to Consciousness Studies. In From Chemistry to Consciousness (pp. 127–146). Cham: Springer International Publishing

Plain numerical DOI: 10.1007/978-3-319-43573-2_8
DOI URL
directSciHub download

Bishop, R. C., & Atmanspacher, H.. (2006). Contextual Emergence in the Description of Properties. Foundations of Physics, 36(12), 1753–1777.

Plain numerical DOI: 10.1007/s10701-006-9082-8
DOI URL
directSciHub download

Busemeyer, J. R., Wang, Z., & Shiffrin, R. M.. (2015). Bayesian model comparison favors quantum over standard decision theory account of dynamic inconsistency.. Decision, 2(1), 1–12.

Plain numerical DOI: 10.1037/dec0000017
DOI URL
directSciHub download

Busemeyer, J. R., Wang, Z., & Townsend, J. T.. (2006). Quantum dynamics of human decision-making. Journal of Mathematical Psychology, 50(3), 220–241.

Plain numerical DOI: 10.1016/j.jmp.2006.01.003
DOI URL
directSciHub download

Khrennikov, A.. (2009). Quantum-like model of cognitive decision making and information processing. Biosystems, 95(3), 179–187.

Plain numerical DOI: 10.1016/j.biosystems.2008.10.004
DOI URL
directSciHub download

Pothos, E. M., & Busemeyer, J. R.. (2009). A quantum probability explanation for violations of ‘rational’ decision theory. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2171–2178.

Plain numerical DOI: 10.1098/rspb.2009.0121
DOI URL
directSciHub download

Trueblood, J. S., & Busemeyer, J. R.. (2011). A Quantum Probability Account of Order Effects in Inference. Cognitive Science, 35(8), 1518–1552.

Plain numerical DOI: 10.1111/j.1551-6709.2011.01197.x
DOI URL
directSciHub download

Wang, Z., & Busemeyer, J. R.. (2016). Interference effects of categorization on decision making. Cognition, 150, 133–149.

Plain numerical DOI: 10.1016/j.cognition.2016.01.019
DOI URL
directSciHub download

Yearsley, J. M., & Busemeyer, J. R.. (2016). Quantum cognition and decision theories: A tutorial. Journal of Mathematical Psychology, 74, 99–116.

Plain numerical DOI: 10.1016/j.jmp.2015.11.005
DOI URL
directSciHub download

DMT

Strassman, R. J.. (1995). Human psychopharmacology of N,N-dimethyltryptamine. Behavioural Brain Research, 73(1–2), 121–124.

Plain numerical DOI: 10.1016/0166-4328(96)00081-2
DOI URL
directSciHub download

Jacob, M. S., & Presti, D. E.. (2005). Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Medical Hypotheses, 64(5), 930–937.

Plain numerical DOI: 10.1016/j.mehy.2004.11.005
DOI URL
directSciHub download

Wallach, J. V.. (2009). Endogenous hallucinogens as ligands of the trace amine receptors: A possible role in sensory perception. Medical Hypotheses, 72(1), 91–94.

Plain numerical DOI: 10.1016/j.mehy.2008.07.052
DOI URL
directSciHub download

Barker, S. A., Borjigin, J., Lomnicka, I., & Strassman, R.. (2013). LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomedical Chromatography, 27(12), 1690–1700.

Plain numerical DOI: 10.1002/bmc.2981
DOI URL
directSciHub download

Barker, S. A., Monti, J. A., & Christian, S. T.. (1981). N,N-Dimethyltryptamine: An Endogenous Hallucinogen. In International Review of Neurobiology (pp. 83–110)

Plain numerical DOI: 10.1016/S0074-7742(08)60291-3
DOI URL
directSciHub download

Rosengarten, H., & Friedhoff, A. J.. (1976). A Review of Recent Studies of the Biosynthesis and Excretion of Hallucinogens Formed by Methylation of Neurotransmitters or Related Substances. Schizophrenia Bulletin, 2(1), 90–105.

Plain numerical DOI: 10.1093/schbul/2.1.90
DOI URL
directSciHub download

Meek, J. L., & Fuxe, K.. (1971). Serotonin accumulation after monoamine oxidase inhibition. Effects of decreased impulse flow and of some anti-depressants and hallucinogens. Biochemical Pharmacology

Plain numerical DOI: 10.1016/0006-2952(71)90155-9
DOI URL
directSciHub download